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In the convective combustion of an aerosol, the speeds of the gas and combustion front 
are often much less than the speed of sound in the gas. In that case, the process can be 
examined within the framework of the homobaric approximation [i], in which one uses an 
equation for the homogeneity of the gas pressure in space instead of the momentum equation. 
One-dimensional treatments of convective aerosol combustion for bounded regions have been 
considered in [2-4] within the framework of the homobaric approximation. In [5], analogous 
problems were solved numerically, and it was shown that damped oscillations in the parameters 
occur at low fuel concentrations in a flow, with the oscillations occurring around the 
homobaric solution. In [6], results were presented briefly from the numerical solution of 
a one-dimensional problem on the combustion of coal dust suspended in air in a closed region. 

Here we consider convective combustion in a square region for low fuel concentrations. 
The equation system is unclosed for two-dimensional motion in the homobaric approximation. 
It is closed by assuming that the motion is potential. The resulting solutions are compared 
with the numerical solution to the complete system of equations~ The comparison shows that 
the assumption of potential behavior is correct. The characteristic streamline and isobar 
patterns are presented. 

In [7], a numerical study was made of the planar nonstationary combustion of a cloud of 
unitary fuel particles in a half-space above a horizontal surface. 

i. Formulation and Basic Equations. Consider planar two-dimensional flow of an aerosol. 
The equations of continuity for the gas and solid phases and for the conservation of the 
number of particles in unit volume take the form [i] 

0k 
001 , v . ( v l v D  J ,  + v . (p~v~)  = - -  J ,  5V + v . ( n v 2 )  = 0, ( 1  l )  

w h e r e  Oi, V i ( u i ,  v i )  ( i  = 1,  2)  a r e  t h e  mean d e n s i t i e s  a n d  v e l o c i t i e s  o f  t h e  c o r r e s p o n d i n g  
p h a s e s ,  n i s  t h e  n u m b e r  o f  p a r t i c l e s  i n  u n i t  v o l u m e ,  and  J i s  t h e  mass  c o m b u s t i o n  r a t e .  

We e x a m i n e  l o w - d e n s i t y  s u s p e n s i o n s ,  w h e r e  t h e  v o l u m e  c o n t e n t  o f  t h e  f u e l  c a n  be  n e g l e c t e d ,  
a n d  w r i t e  t h e  e q u a t i o n s  o f  m o t i o n  a s  

OplV 1 0 0 
Ot + -g-/PlulVl +-d-] plvlVI + V p = - f  + JV2' (1.2) 

OP2V 2 0 j _  0 
Ot -t  ~ [32u2V2 ' ~ Peu2V2 = f -- "I-V2' 

where p is gas pressure and f(fx, fy) is interfacial friction. 

The following are the equations for the internal energy of the solid phase, the total 
energy of the mixture, and the equations of state correspondingly: 

OP,,e 2 
~)t + V.(Y2poe2) = i f - -  Je2,~, 

r )  (~Olf~ 1 ~_ t)~E2) @ V" (V I (p ~- 01~1) ) -~ V, (V 2 02E2 ) = 07. o t  - 
2 

e~ = c~ (T2 - -  To) + Q ,  p = p ~ R , T ~ ,  l) ~ = c o n s ~ ,  

(1.3) 
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where el and e 2 are the internal energies of the phases, whose temperatures are Ti, and Q is 
the reaction energy. 

We assume that a particle ignites when its surface reaches a given decomposition (igni- 
tion) temperature Ts. To determine the mean-mass temperature of the particles Ts* at which 
ignition occurs, we consider the heating of a spherical particle: 

~T'2 i 0 ( OT~\ aT' 2 Nu(T1--T~e ) (1.4) 
P2C~ a~ r 'z Or )~2r~-~r ) = O, Or r=r  ~ -- 2r o ' 

r 0 

= O, T~ (0, r) = To), T 2 3/r r'T.,dr. 
~r I r ~  0 . . . .  

0 

Here T~o is the current surface temperature 
From (1.4) we get the value T 2 = Ts* at the 
the range Nu(T i - Ts)/T 0 from 0 to 400, the 
is obtained from (1.4) by an inexplicit net 
of 3% by 

and T 2 is the mean mass particle temperature. 
time when the surface ignites (Tio = Ts). In 
theoretical dependence of Ts* on Nu(T i - Ts)/T 0 
method, which is approximated with an accuracy 

T--~=l§ --I exp - ~ N u ~ ) .  (i.5) 

The terms for the interaction between phases are 

0,  T ~ <  T * ,  

J = ~nd2p~u~ (P/Po) ~, T2 >7 T*,: 

l nnd~,l Nu12 ( T 1 - -  T~)~ T~ < T *  

q= to,: rL: 

n 6 Re2/SP ~11~ Rel~ = 010 J v l  - -  v2  [ d Pr = %xl 

rind ~ .,  0 [ V1 - -  Vu I (Vi  - -  V2) Cd = 24 4,4 
f = -%--udP~ 2 ~ ~ + Re~--~ + 0,42,. 

(1.6) 

where h i and ~i are the thermal conductivity and viscosity of the gas; d, particle diameter; 
Us, fuel combustion rate; Nul2, Rel2, Pr, Nusselt, Reynolds, and Prandtl numbers for the relative 
flow around the particles; and C d, coefficient of friction. 

We consider the growth of convective combustion in a bounded region. Let the region G 
(0 ! x, y ! ~) be filled with the aerosol, and in a certain part G o (0 ! x, y ! x0), the 
temperature of the fuel particles is raised to T 2 = T s at the initial instant without 
raising the pressure, and combustion begins. The initial and boundary conditions are 

t = 0 : V 1 = V 2 = 0 ,  T 1 = T o , Pl  = Pio, P2 = P2o, 

n .= no, T~ = To((x, y) ~ G\Go) ,  r ~ =  Tg(x, y) ~ GoL 

(i.7) 

where 8G is the boundary of the region and V~ n is the velocity component normal to the boun- 
dary. 

2. Convective Combustion in the Homobaric Approximation. After the start of combustion, 
the products penetrate into the unburned region under the pressure difference and heat the 
particles to the ignition temperature. If the mass content of the particles is small 
(P~0/(P20 + Plo)<< ~) , the effects of the particles on the gasi~motion are slight. Therefore, 
to describe the initial stage of motion, when the reaction time is less than the time for 
particle entrainment in the gas motion, we can consider the particles as immobile and neglect 
the effects of the friction between phases on the gas. The combustion propagation speed is 
defined by the dimensionless parameter [4] 
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l]  = 6 (,; - -  t )  ,%oQu, I/O~o da~. 

For small values of this parameter, the convective combustion rate is substantially less 
than the speed of sound, so the pressure has had time to equalize in the motion of the convec- 
tive front in the bounded region and the process can be examined in the homobaric approxima- 
tion. In the one-dimensional approximation, the velocity pattern is uniquely determined by 
the energy equation [2]. In the two-dimensional motion in the homobaric approximation, the 
equation system is unclosed, since the two equations for the gas momentum are replaced by 
one equation for the uniformity of the pressure p = p(t). To close the system, we assume 
that the flow is potential. This follows from the motion in that case being essentially 
acoustic, since it arises from small perturbations related to the distributed injection and 
heat production. In the next section, the assumption about potential flow in the essentially 
subsonic motion is confirmed by numerical solution of the complete equation system. 

With these assumptions, the equations describing the mixture motion take the form 

V 2 : O, Op2/Ot = - - f ,  8n/Ot = O, 

c)paeJc)t = q - -  Je2s, OpffSt + V" (VIpl) = J ,  

V l  = V %  V2q) = ltf, lr~ = 3?-- t ( t dp ) 

( 2 . 1 )  

The following condition for the potential follows from the boundary conditions of (1.7): 

8~/OnloG = O. ( 2 . 2 )  

We consider two limiting cases: combustion occurs only in the initiation zone Go, and 
the propagation of the hot gases does not ignite the particles outside Go; or alternatively, 
the particles ignite instantaneously at the convective front outside the ignition zone. 
We integrate the last equation i (2.1) throughout the region and use the boundary conditions 
of (2.2) together with the integral Green's formula to get the pressure-increase law for the 
first form: 

dp x~ 
~t - ] Q  (? - i ) - F .  

In the second form, the equations for the area S w of the combustion zone are 

d-T- ---- VZq~dr" 
G 

In the initial stage, the burnup of the solid may be neglected [4], i.e., we put J = const in 
formula (1.6) for the mass burning rate. Then we get the pressure increase from 

d--d = J Q  (V  - -  1) 7 '  dt ~,p = 

2 
t = O :  p = p o ,  S ~ o = x 0 .  

The solution to the Neumann problem of (2.1) and (2.2) for the square region is sought 
as Fourier series. The complete system of eigenfunctions for that case is [8] 

The coefficients in the expansion for the potential 

~c 

0,0 

are determined from 
t 

c'~5 : 7 - -  
n i j  

o 13 

( 2 . 3 )  
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We apply Green's formula to (2.3) to get 

c~j ~ 0% 
(2.4) 

In the calculations, we use a finite segment of the Fourier series (0 < i, j ! N); the num- 
ber N is chosen such that the relative error is not more than 1%. In ~he form given below, 
N = 15. 

The calculations were performed for a model fuel with the following thermodynamic data 
and conditions [5]: 

to~ t ,29  kg/m 3, 

t /1 = 287 m:Z/seJ-g, 

c2 = 1466 mi2/sec z" g, 

tq  = t , 7 . 1 0  -~ kg/mosec,  

p~ o = i550 k g / m  3, 

cpl = i 0 0 0  1112/SOC2. "g, C~.- 1 = 7 i3  m'Z'/sec l . g ,  

T~ = 4 7 3  K,  T O = 273 K,  

~1 = 2, 57" i0 -2  kg 'm / secS -g ,  ~2 = 0,687 kg.m/s~eS.g 

We consider the combustion for d = 0.5ramand p2Q= 0.13 kg/m 3 in a region ~ = 0.84 m, 

x 0 = 0.25~; Fig. 1 shows the gas flow lines together with the numbered level lines for the 
modulus of the velocity at the initial instant (the dashed lines are X = x/~, Y = y/K). 
The modulus of the velocity is derived from IVII = i 0.159 m/sec, where i is the line number. 
The gas emerging from the combustion zone flows outwards somewhat. The cold gas compressed 
by the combustion products moves towards the corner opposite to the combustion zone. It is 
evident from (2.4) that the streamline pattern is entirely determined by the shape of the 
combustion zone, and it is independent of time for the first form. The maximum gas speed 
occurs at the boundary of the combustion zone. The velocity V1(x, y, t) at any instant is 
defined by 

V~(x, y, t) = V~(x, y, O)Ax(t)/A~(O), 

where At(t) is shown in Fig. 2 (line 7). In the case of instantaneous ignition, the combus- 
tion zone enlarges at the convective front. The flow pattern as the combustion zone enlarges 
varies only slightly. The current lines deviate somewhat from their initial positions, but 
they still emerge from the origin and terminate at the opposite corner. The maximum velocity 
occurs at the boundary of the combustion zone. The dashed lines in Fig. 1 show the positions 
of the flame front at the instants t = 0, 85, and 170 msec (lines 1-3). Figure 2 shows the 

dependence of the pressure AP = 103 (p - P0)/P0 on time (~ = t/t0, t o = d/2us) for the case 
with the fixed combustion zone (line i) and the case with instantaneous ignition (line 2), as 
well as the time dependence of IVI! = IVII/V0 at a given point (X = 0.25, Y = 0.2, V 0 = 0.14 
m/sec (line 4),~ and the time dependence of the density of the solid phase in the combustion 

zone (R 2 = 20(P2/P20)) (line 6). 

The complete system (1.1)-(1.7) was solved numerically in three stages with allowance 
for the wave effects: i) the solution was obtained neglecting the phase-interaction terms 
(J, q, f), with the Lax-Wendroff two-step method used in the difference approximation; 2) 
the solution was refined with allowance for the phase-interaction terms by means of an explicit 
scheme of the first order of accuracy; and 3) smoothing was applied in the regions where 
there is an irregularity in the solution of [9]. 

We consider combustion with the above parameters. In Figs. 3 and 4 a-h correspondingly, 
we show the streamlines and isobars for t = 1.8; 2.9; 4.3; 4.6; 5.8; 6.7; 8.5; 46 msec, with 
the numbers on the isobars the pressure increments relative to the initia~ value in percent. 
Figure 2 shows the time dependence of the pressure (line 3) at the point (0) and the horizontal 
velocity component at the point (0.25, 0.2) (line 5). It is evident that the parameters oscil- 
late. One can establish the mode of oscillation by considering the streamlines and isobars 
at different instants, which show the successive states. 

Before the perturbation has reached the walls of the region, the streamlines are almost 
straight, with the minor curvature due to the initiation zone not having circular symmetry. 
The isobars are almost circles (a). At t = 2 msec, the pressure perturbation attains the 
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opposite walls (b)~ Reflected waves begin to advance from the nearest corners. At the same 

time, the streamlines become curved and rotate towards the remote corner. At t = 2.8 msec, 
the perturbation reaches the far corner, where the pressure increases, the gas is retarded, 
and a zone of reverse flow arises. The zones of reverse and main flow are evident from the 
patterns. At that time, the compression waves are still advancing from the two opposing 
nearer corners, and the streamlines converge towards the diagonal joining the remote 
corner to the initiation zone. When these waves meet, an increase in pressure occurs along 

that diagonal, which rotates the flows towards the wall (d). The compression wave reflected 
from the far corner continues to move towards the initiation zone, and the region of return 
flow enlarges (e). When the wave moving from the far corner attains the initiation zone 
and the waves it has produced after reflection from the near corners meet at the center, 
the gas flow in the entire region takes the direction from the initiation zone to the opposite 
corner, and the flow pattern is close to the initial one, but the pressure throughout the 
region is higher (f). The difference is related to the above wave interaction. Further, 
the compression wave moves towards the far corner (g). Therefore, there is oscillatory gas 
motion. Subsequently, the motion, reflection, and interaction of the large number of com- 
pression waves causes the picture to be no longer regular. Therefore, a difference from the 
one-dimensional case [4] is that the motion is not periodic. One of the flow patterns is 
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Fig. 4 

shown in parts h of Figs. 3 and 4. Frictional forces, the retarding force in gas injection, 
and the reduction of the injection due to fuel burnup cause these oscillations to be damped. 
The flow pattern becomes similar to that in the homobaric approximation. In that form, the 
combustion occurs only in the initiation zone, and the flame front is hardly displaced. 
However, there are slight oscillations in the front itself because of the oscillations in gas 
speed at it. 

The pressure and velocity fluctuations occur around the homobaric solution derived on 
the assumption of potential flow in the first form (compares lines 1 and 3 or 4 and 5 in 
Fig. 2). The solution with instantaneous ignition at the convective front gives pressures 
higher than those obtained from solving the complete system. 

Calculations from the complete system (1.1)-(1.7) enable one to derive the values for 
the velocity rotor at each point: m = (By/By - ~v/~x)/2. In the above form, maxlm I ~ 10 -2 
sec -I Then the corresponding nonpotential velocity component is [i0] given by 

Vo(x, v)  JG7 ': 

a c c o r d i n g  t o  which  we have  t h e  bound 

IV~l = ~Jlrl2 dT < m a x l ~ l l ' o  

Then Iv~l < 10 -2 m / s e c .  T h e r e f o r e ,  in  t h i s  c a s e  ( low c o n c e n t r a t i o n s  and h i g h  h e a t  c o n t e n t s  o f  
t h e  f u e l ) , - t h e  v e l o c i t y  g e n e r a t e d  by t h e  v o r t e x  r e p r e s e n t s  a s l i g h t  c o r r e c t i o n  t o  t h e  p o t e n t i a l  
v e l o c i t y  component  ( [V l l  ~ 1 .5  m / s a c ) .  
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ACCELERATION WAVE IN A GAS-SOLID PARTICLE 

MIXTURE WITH CONSIDERATION OF FUSION 

A. V. Fedorov UDC 532.529 

A flow of gas mixed with solid particles occurs in many technological processes, in 
particular; in detonation deposition of finely dispersed metal particles on thesurfaces 
of machine parts. The working substance (gas at high pressure and temperature) has suffi- 
ciently high state:parameters so that fusion of the particles being driven occurs. This 
fusion may be of a nonequilibrium character, so that it is of interest to consider problems 
which develop :in high velocity motion of such mixtures with consideration of this process. 

The equations describing propagation of plane waves in an air-dispersed mixture of gas 
and solid particles at temperatures of the continuous phase sufficient for phase transition 
have the form [I, 2] 

o x / o X  = po v, o~/ot = • = - ( i / ' O ( ~ -  ~e), 
8plOX + PoOU/Ot = O, Oe/Ot + pOv/St = O, 

e = e (S ,  v ,  ~), p = - -e~ (8 ,  v, ~), r = es (S ,  v,  ~), 

where the Cartesian component x describing the motion of the medium is a function of the posi- 
tion of a point at the initial moment X and the current time t, i.e., x = x(X, t); P0 is the 
initial density of the mixture; v, p, u, e, T, S are the specific volume, pressure, velocity, 
internal energy, temperature, and entropy of the mixture; g is the relative mass concentration 
of the liquid phase; ge = ge (S, v) is the equation of equilibrium fusion; T is the relaxation 
time of the fusion process. 

We will assume that at the initial moment the mixture has the following parameter values 

v = v o ,  ~ =  ~o, S =S0, x = X .  
Following [3], we will define a second-order wave as a singularity in the flow propagating 

along the line y = y(Y, T) on which x(X, t) may have discontinuities in its second derivatives, 
while x(X, t), S(X, t), $(X, t) have continuous first derivatives. Second-order waves are 
called acceleration waves. 

Thus, by ,definition, in an acceleration wave the equations 

[x] = Iv] = [u] = IS ]  = [~] =0, [~] = ~ i - - %  

are satisfied. 

Using the equation of state and the kinetic and energy equations, we find 
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